MLE Parameter Estimation for BNs
Posted on Wed 18 May 2016 in parameter_estimation
At the moment pgmpy supports Maximum Likelihood Estimation (MLE) to estimate the conditional probability tables (CPTs) for the variables of a Bayesian Network, given some data set. In my first PR, I’ll refactor the current MLE parameter estimation code to make it a bit nicer to use.
This includes properly using pgmpy’s state name feature, removing the current limitation to int
-data and allowing to specify the states that each variable might take in advance, rather than reading it from the data. The latter will be necessary for Bayesian Parameter estimation, where non-occurring states get nonzero probabilities.
Update: #694 has been merged, and MaximumLikelihoodEstimator
now supports the above features, including non-numeric variables:
import pandas as pd from pgmpy.models import BayesianModel from pgmpy.estimators import MaximumLikelihoodEstimator model = BayesianModel([('Light?', 'Color'), ('Fruit', 'Color')]) data = pd.DataFrame(data={'Fruit': ['Apple', 'Apple', 'Apple', 'Banana', 'Banana'], 'Light?': [True, True, False, False, True], 'Color': ['red', 'green', 'black', 'black', 'yellow']}) mle = MaximumLikelihoodEstimator(model, data) print(str(mle._estimate_cpd('Color')))
Output:
╒═══════════════╤═══════════════╤══════════════╤═══════════════╤═══════════════╕ │ Fruit │ Fruit(Apple) │ Fruit(Apple) │ Fruit(Banana) │ Fruit(Banana) │ ├───────────────┼───────────────┼──────────────┼───────────────┼───────────────┤ │ Light? │ Light?(False) │ Light?(True) │ Light?(False) │ Light?(True) │ ├───────────────┼───────────────┼──────────────┼───────────────┼───────────────┤ │ Color(black) │ 1.0 │ 0.0 │ 1.0 │ 0.0 │ ├───────────────┼───────────────┼──────────────┼───────────────┼───────────────┤ │ Color(green) │ 0.0 │ 0.5 │ 0.0 │ 0.0 │ ├───────────────┼───────────────┼──────────────┼───────────────┼───────────────┤ │ Color(red) │ 0.0 │ 0.5 │ 0.0 │ 0.0 │ ├───────────────┼───────────────┼──────────────┼───────────────┼───────────────┤ │ Color(yellow) │ 0.0 │ 0.0 │ 0.0 │ 1.0 │ ╘═══════════════╧═══════════════╧══════════════╧═══════════════╧═══════════════╛